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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 27^3 

LANDING-GEAR IMPACT 

By W. Flügge 

SUMMARY 

This report deals with the impact forces in landing gears. Both 
the landing impact and the taxying impact have been considered, but drag 
forces have been so far excluded. .The differential equations are devel- 
oped- and their numerical integration is shown, considering the nonlinear 
properties of the oleo shock strut. A way is shown how the dimensions 
of the metering pin may be determined from a given load-time diagram. 
A review of German literature on landing-gear impact is also presented. 

INTRODUCTION 

The objective of this report is to study the impact forces acting 
on the wheels and shock struts of an airplane. For practical reasons 
the investigation has been limited to the vertical forces and does not 
consider the effect of the drag load which acts on the wheels during 
the spin-up time. Within the limits drawn by this restriction, an attempt 
has been made to develop a method for numerical computations which, it 
is hoped, will be useful in practical design work. 

The oleo-pneumatic shock strut which is now in general use and 
which has attained a high degree of perfection exhibits a rather com- 
plicated relation between the force, the stroke, and the rate of stroke. 
For practical work, it is imperative to express this relation in mathe- 
matical form and to develop a method for the numerical solution of the 
ensuing differential equations. A detailed discussion of this subject 
will be found in the section "Intentional Nonlinearities." 

Nevertheless it is sometimes useful to consider a highly idealized 
type of landing gear which has linear differential equations. Although 
such a model will never correctly reproduce the details of the real 
landing impact, it admits of easy mathematical treatment and permits 
study of questions of a more general character. This has been done in 
the section "Linear Spring-Damper Systems" and the usefulness of the 
results obtained there lies in the fact that they do not depend on the 
more or less incidental details of real landing gears which unavoidably 
enter the computations of the nonlinear theory. 
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The later sections of the report are devoted to refinements of the 
method.  Except for the simple mass corrections, they will not be used 
in daily routine work, but they may be of particular importance when 
airplanes of unusual design are built. 

This work was conducted at Stanford University under the sponsorship 
and with the financial assistance of the National Advisory Committee for 
Aeronautics. 

While preparing this report the author has received valuable 
information on current American practice through Mr. J. F. McBrearty, 
Lockheed Aircraft Corp., Mr. K. E. Van Every, Douglas Aircraft Co., Inc., 
and Mr. A. I."Sibila, Chance Vought Aircraft, for which he wishes to 
express his thanks. He also wishes to thank Mr. C. W. Coale for his 
active help throughout the preparation and the writing of this report. 

SYMBOLS 

An, Bn       coefficients 

A0 inner cross section of barrel at oil level 

A]_ total cross section of piston 

A2 inner cross section of piston 

Ao area of gap between metering pin and edge of orifice 

a, b distances of landing gears from center of gravity (used 
only in section "The Airplane as a Whole") 

b damping constant for one shock strut (used only in section 
"Linear Spring-Damper Systems") 

F0 force in strut when strut is fully expanded and at rest 

Fj_ compressive force in shock strut 

Yo compressive force between wheel and ground (if different 
from Fi) 

F3 . force in auxiliary landing gear 

g acceleration due to gravity 
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h 

Ix, Jy 

ix = l/ix/mj 

V = /Iy/n»j 

kl 

kg 

m 

ml 

mo 

Po 

height of obstacle encountered during taxying 

moment of inertia of airplane with respect to longitudinal 
and lateral axis, respectively 

radii of gyration 

spring constant for one shock strut 

spring constant for one tire 

mass of airplane 

that part of mass m attributed to one landing gear 

unsprung mass for one landing gear 

pressure in both chambers when strut is fully expanded 
and at rest 

V± pressure in upper chamber of strut 

Pp pressure }.n lower chamber of strut 

T reference time 

t time 

V vertical velocity of landing gear when it first touches 
ground 

v oil velocity in orifice 

W vertical force, other than impact force, acting on 
airplane (weight minus lift) 

Wj that part of force W attributed to one landing gear 

x stroke of shock strut 

x-i vertical displacement of mass m^ 

Xp vertical displacement of unsprung mass m2 
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Xo used instead of x-^ when a second landing gear must be 
considered simultaneously 

z displacement of center of gravity of airplane 

a angular displacement (angle of pitch) of airplane in its 
plane of symmetry 

7 ratio of specific heats 

8 static deflection of mass m]_ 

p density of oil 

All displacements are zero when the wheels touch the ground without 
pressure. 

LINEAR SPRING-DAMPER SYSTEMS 

Differential Equations 

Essentially, a landing gear consists of a shock strut and a wheel 
with a tire. The shock strut may be compressed considerably.  It opposes 
this deformation with an elastic force increasing with increasing stroke 
and with a damping force which depends on the rate of stroke and which 
dissipates mechanical energy. This shock strut may be represented by a 
spring and a damper arranged in parallel (fig. 1). The tire is for the 
present purposes a simple spring whose deformation is more or less pro- 
portional to the applied force. 

Between these two deformable elements there is the mass mr, of 

the wheel, including those parts of the shock strut which participate in 
the motion of the wheel.  On top of the whole landing gear there is the 
airplane mass or, more exactly, that portion m^ of the airplane mass 

which belongs to the landing gear under consideration. 

When the airplane lands, this system approaches the ground with a 
considerable velocity. As long as the spinning up of the wheels is not 
considered, only the vertical component V of this velocity is of 
interest. The impact begins when the lower end of the landing gear 
touches the ground. This instant is designated t = 0, and the vibra- 
tions of the masses m^ and n^ are studied which follow for t > 0 
when the motion of the lower end of the spring-mass system is suddenly 
stopped. 
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Linear differential equations are obtained when the shock strut is 
replaced by a simple spring and a viscous damper (dashpot) and when 
the tire is assumed to be a linear spring. There might also be a linear 
damper coupled with the tire but, compared with the shock-strut damping, 
the contribution of the tire to damping is so small that it does not 
seem worth while to include it in the equations. 

The differential equations of the landing-gear impact will now be 
formulated. Figure 2 shows the mechanical system in two positions, one 
for t = 0 and the other for some later time. The displacements of 
the masses mj_ and m2, measured from their positions at t = 0, are 
called X]_    and x2, respectively. Their difference 

is the stroke of the shock strut. 

If k2 is the spring constant of the tire, then the force trans- 

mitted from the ground to the unsprung mass nu is 

F2 = kgXg (la) 

On the other hand, the force in the shock strut is the sum of an elastic 
force kj_x and of a damping force which, in linear theory, must be assumed 

proportional to the velocity x = dx/dt with which the masses m-,  and mo 
approach each other: 

F-L = kjx + bx (lb) 

The third force is the load Wj which acts as an external force on the 

mass m-p  It is a part of the weight of the airplane minus a corre- 
sponding part of the wing lift.  It will be shown in the section "The 
Airplane as a Whole" what part of the total weight and lift must be 
attributed to each landing gear. 

The three forces W-j_, Fj, and F2 determine the motion of the 
masses m^ and m2, according to the equations 

mlX*l = Wj - F]_ 

m2x2 = Fj - F2 



6 NACA TN 2743 

When F-|_ and Fg are expressed here by x and Xg according to 
equations (la) and (lb), or better still by x,  and Xg, the differ- 

ential equations of the linear landing gear are obtained: 

ml*x'l + ^(xl " X2J + kl(xl " x2j ~  Wl (2&) 

'x'g - ^(x-n " Xg) - k-L(x1 - Xg) + kgXg = ° (2t)) nig 

The problem is of the fourth order and requires four initial conditions 
for t = 0. Before its solution is given, a simplified version will be 
considered which is sufficient in most cases. 

Solution Neglecting Unsprung Mass 

The unsprung mass nig is rather small, usually between 2 and 
5 percent of the mass m-j_.  Under certain conditions it has a very 
definite influence on the force in the landing gear.  But it will be 
seen that it is only of minor importance for the early phase of the 
landing impact, up to and beyond the maximum of the impact force.  One 
may therefore begin with a simplified set of differential equations, 
obtained from equations (2) by dropping the term with mg: 

mjxi + b^X]_ - x2) + ^(xj - Xg) = W-|_ (3a) 

-bfxj - xg] - k-jfx-L - Xgj + kgXg = 0 (3b) 

Since x-^ and ig are the highest derivatives occurring in these 

equations, the problem is of the third order, and there must be three 
initial conditions. 

Two of them follow from the fact, that the displacements xj_ and x2 
are counted from the position of the system at t = 0. Therefore 

t = 0:    XJL = 0,    xg = 0 
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The third condition is that the mass m±    has at this time the veloc- 
ity V: 

t = 0:    x±  = V 

It is useful to replace the second condition by an equation for xj_. 
This may easily be done by introducing all three conditions in the dif- 
ferential equations. Equation (3b) yields x2 = V, and it is seen here 
that this is not an independent fourth condition, as one might feel 
inclined to think. Equation (3a) yields now: 

t = 0: k\ =  Wi/m-L 

and this initial relation may be used instead of any one of the other 
three, preferably instead of x2 = 0. 

One may easily find a particular solution of differential 
equations (3): 

xl = wl 

Wn 

k-]_ + kg 

*2 

w 

It describes the position in which the system is in equilibrium under 
the load Wj_. Besides this, the solution of the homogeneous equations 
is needed. Since all coefficients of the equations are constant, the 
homogeneous solutions are exponential functions of time, say 

xj = Ae Xt 

Be Xt 

When this solution is introduced into equations (3a) and (3b) after 
dropping there the term W-[_, two linear equations are found for A 

and B: 
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A (ffl!A.2 + bX + kj   - B(TD\ + kj   =0 

A^bX + k-J   - B(bX + kj + k^)  = 0 

(5) 

Since these equations are homogeneous, they will not have a solution 
A ^ 0, B / 0 unless the determinant of the coefficients vanishes, and 
this condition yields the characteristic equation of the problem: 

b m. m-|_b 
(6) 

It is of the third degree.  One of its three roots must be real and, 
since all coefficients are positive, this root must necessarily be 
negative, say 

x = -x3 

The other two roots may also be real and negative, 

and 

A. — —X-t 

K   — ~ Kr 

or they may be conjugate complex: 

-u ± iv 

It may easily be shown that in this case the real part must be negative, 

For the rest of the formal treatment the cases of real and of 
complex roots X    must be separated. 
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High damping, all roots real.- In the case of high damping with 
all roots real the general solution of differential equations (3) is 

Wi 
kl + *2  .  -X-it 'Kot* Xot 

klk2 

. -1 O -A.A U -/\o 

+ A-^e -1- + A2e ^ + A^e -> 

A. it -Xot 
x2 = wi F" + Bie   + B2e   + B3e 

-Xot 

(7) 

In these formulas only the constants A]_, A2, and Ao may be chosen 
arbitrarily, while Bj, B2, and Bo depend on them through equa- 

tions (5), in which in each case the appropriate X must be inserted. 

When t is set equal to zero and then x1 and its derivatives are 

introduced in the initial conditions, a set of three linear equations is 
obtained for A]_, A2, and Ao. They are: 

Ai + A2+A3 = .W1(^+.i 

X]Ai + X2A2 + X0A0 = -V 

W, 
XT^AT + X 2Ao + X,2Ao = — -1 Al -r A-p Rip   -r A,o AO m-, 

They must be solved numerically, and then the displacements may be 
found for any time t. 

The most interesting quantities are the stroke x = x^ - x2 and 

the impact force F-, . For both the B's are needed in terms of the A's: 

Bn = A 
kl " ^n 

n   n ^ + fcg _ "bXn n = 1, 2, 3 (8) 

and then 

W-L 
x = T- + 

Axk2 -X-,t 
kl  kl + k2 " **■! 

1' + 
Agkg 

k-, + kg - bX2 

-X0t 
e d    + 

A3k2 -Xot 
1    «J 

1 + ^ - bX3 
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and 

F1 = F2 

kpXg, 

The coefficients Bn need not necessarily be positive. Then there 
may occur a time t > 0, where F2 = 0.  If this happens, it would 

terminate the domain of validity of the formulas. For greater values 
of t, the force F2 would not become negative (i.e., tensile), but 

the wheel would leave the ground) the airplane would rebound. 

Because of the force Wj, the airplane would soon return to the 

ground. Meanwhile its horizontal speed or the angle of attack might 
have decreased and hence W]_ increased. The vertical velocity at the 
second impact would be, on the other hand, considerably smaller than V. 
The new impact would therefore be less violent, but not necessarily 
uninteresting, because it would find the shock strut in a less favorable 
condition, with x > 0 and, perhaps, close to the possible limit. 

Whether rebounding will occur and how strong the second impact will 
be can be determined only from detailed numerical computations in each 
particular case. But one may say quite generally that the probability 
of a zero of F2 is greater the more solutions the homogeneous equations 
have. Since each additional mass and each additional spring increases 
the order of the equations, one should avoid mechanical complexity if 
rebounding is undesirable. 

Low damping, one pair of roots complex.- The complex exponentials 
which appear in the case of low damping with one pair of roots complex 
may be expressed in real form by exponential and trigonometric functions: 

kl + ^2 ,  -Ht/„  _ .l4. , A  „,.„ ,14\ , A  -Xot xl = Wl —k k-» +    (Al COS Vt + A2 sln Vtj + A3e 

r (9) 
\ot x2 = Wl k7 + e_M't(:Bl cos vt + B2 sln vt) + B3e~X3 
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The relations between the A's and the B's are here more involved 
because equation (8) can be applied only before the trigonometric 
functions are introduced. When this is done the following relations 
are found: 

B-L = (l + OJA-L + ßxA2 

B2 = -ß]Al 
+ i1 +  al)A2 

B3 = (l + a2)A3 

u2(kx - bu) - v2^ + b*i) 
al = ml  7 \2 2~2  

with 

(kl - bu)' 

ß1 = m;L 
bv(M.; 5  +  V2)   - 2kxuv 

■ (*i 
- b^)2  + b2v2 

m-iAo 

a2       ] 
h ~ bX3 

The boundary conditions will now yield the following set of three 
equations for Ap k^,   and A^: 

A-, + A^ = -W-1 (— + —1 1   3 XUi  k2 

[i.A1 -  VA2 + X0A0  =  -V  . 

(^i2  -  V
2

)AX  - 2uvA2 + X3
2A3 = ~ 

ml 
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When these equations have been solved numerically, Bj, B2, 

and Bo may be found from the preceding formulas. Then 

X — X-i ~ Xn 

Wl    AomnXo2  -X-t   , N -ut 

= ^-^b^e 3 - (Vl + h*2>        cosVt + 

(ß-^ - a1A2)e"
llt sin Vt (lO) 

F1=F2 

— kpXo 

= Wx + k2 Boe"^ + e"
M-t(B1 cos vt + B2 sin vt) 

In this case rebounding is rather probable because of the trigonometric 
terms, and it will be inevitable when W-^ = 0. 

Solution Not Neglecting Unsprung Mass 

The results just described may be considered representative for the 
landing impact if it can be shown that they are not seriously affected 
by the neglected mass n^ of the wheel. This side of the problem will 

now be investigated. 

Instead of equations (3) set (2) must be used which still contains 
the term with m2. Four initial conditions are required: 

t = 0:    x1 = 0,    x2 = 0,  ' . ij = V,    x2 = V 
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which now are all independent of each other. When they are introduced 
into differential equations (2), there are obtained 

t = 0:    Xj = Wj/mj,    x2 = 0 

If equation (2a) is differentiated once more and again everything known 
is introduced, another dependent condition is found: 

t =0:    xx 
bW1 

For actual use, choose from all these conditions the set of four which 
refer to x-]_ only: 

W-,     .     w, 
t = 0:    x1 = 0,    i^V,    x1= 1    \ = --± (ID 

1 m-i 

The general solution of equations (2) is 

kl + *2        -^i*/ \ 
Xl = Wl —kX7~ + e   (Al cos vlt + A2 sin vl't) + 

e *   IA^  cos v2
t + \  sin v2t) (12a) 

1       -Hn"t / v 
X2 = Wl k~ + e   (Bl cos ^ + B2 sin vlt) + 

e~^? (B3 cos v2t + B^ sin v2t) (12b) 
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Here \i    and V are obtained from the real and imaginary parts of the 
four solutions 

A, = -nx ± iv-L 

\ =  -M-2 ± iV2 

of the frequency equation 

x* + U-L  mg/     lmx    m2  y    m^    mim2 
0    (13) 

and the B's depend on the A's by the relations 

with 

Bn 

Br 

B3 = 

(l + CL1)A1 + ßxA2 

"ßlAl + i1 + al)A2 

(l    +    0-2)A3    +    BQA^ 

-ß^ +  (l + a2)A^ 

an = m1 

ßn = ml 

^n2(ki  - b^n)   - Vn2(k! + ^n) 

(*1 - ^n)2 + b2vn2 

bvn(^n2 + vn2)   " 2kl^nVn 
 1  1 

(\ - bnn)2 + h2vn
2 

= 1,2 

(l^) 

(15) 
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The force acting between the tire and the ground is again 

and may be computed from equation (12b). It is responsible for the 
stresses in the tire, and when it becomes zero the airplane will rebound. 
But F2 is not equal to the shock-strut force Fj which in turn is 
responsible for the action of this part of the landing gear and for the 
dynamic load on the airplane structure. This force must be found from 
equation (lb): 

F = W-,   + e_Ma 
1 _ "1 * j[(bHl - k])(aiAi + ßi-Aß)  + hV1(ß1A1 - a^J    cos V^ + 

f vl(alAl + ßlA2)   "   (b^l  '  kl)(ßlAl  - alA2)] sin Vjt   y + 

e"^2t fr^2 - ^(^3 + ß^) + bV2(ß2A3 " V^)] cos V2* + 

|bV2(a2A3 + ß^) - (bu2 - fr^ßgAg- - ^h}]   sin V [      ^1Jb^ 

From the formulas shown here it is clear that the final result is 
connected with the data of the problem through an algebraic equation of 
the fourth degree and through a set of four linear equations. Solutions 
must be obtained numerically for a given set of data, so it is not pos- 
sible to discuss the features of the solution in general terms. To find 
out how they look, a series of systematically chosen examples has been 
computed which will be discussed in the section "Discussion of Numerical 
Results." 

Undamped System 

As a basis for this discussion, it is useful to consider the case 
when the damping b is zero and, additionally, mx » m2. The second 

assumption is certainly good but, if used alone, it would not give any 
substantial mathematical relief. The first assumption is, of course, 
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not very realistic in a landing gear whose essential purpose is damping, 
but the conclusions derived will help in understanding the more realistic 
cases. 

When b = 0, the frequency equation (equation (13)) loses the 

terms with X^ and X and, when it is assumed that m-^ » v^,  the 
first part of the coefficient of X2 may be neglected. 

The equation reads then 

Xk + 
kl + k2 X2 + 5fe = 0 

BV) m-iiiip 

and its solutions are purely imaginary, say 

X = t±v± 

and . 

X = ±iv2 

When the equation for X  is solved and everywhere 1/mi is neg- 
lected against l/m2, it follows that 

X2 =  - ^ + *2  + kl + ^ 
kLi 

2mp     2m2 

The upper sign yields X2 = 0 and hence V-^ = 0) the lower sign yields 

cl + *2 v2 = \|—m7~ 

This indicates that v-j_ « V2, but evidently too many small terms were 

neglected to find a reasonable value for V-.. It may be obtained from 
? P the fact that the third term in the equation must equal vn v

2 
: 

v 2   
kl*2 

1 "      2 
m-iin^V^ 



18 NACA TN 27^3 

klk2 
1 = ymi(k! + kg) V-, = 

This is indeed much smaller than v2. 

Since u-]_ = u2 = °>   solution (12) loses the damping factors e 

and becomes: 

-[it 

X1=W1 
k-j_ + kg 

+ Ax cos  V]_t + A2 sin V]t + A3 cos  Vgt + A^ sin V£t 

2 = Wx i + B-L cos  v-jt + B2 sin V±t + B3 cos  Vgt + B^ sin Vgt 
k2 

When this expression for Xj is introduced in initial conditions (ll), 
a very simple set of equations is obtained: 

V+A3 = -wi(kI + 4 

V1A2 + V2kh  = V 

Wl 
V
1
2A

1
+
 
V
2
2A

3 = "SI 

V
1
3A
2 

+ V23A4 = ° 

> (18) 

It consists of two independent pairs which will be solved and discussed 
separately. 
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From the first and third equations: 

1  v/.v/^l  2  klk2y 

W- 1   "^ 
^ + kg m-L 

1 - (kl + ^ ml 
mg   kxkg 

« -W 
kl + k2 

A-, = 
Vl (l 2 kl + ^ 

3 = " v 2 _ V2k " 1   kxkg 
'2 - vl 

1  -2(1 
k-L + kg m-^ 1) 

= 0 

Equations (15) yield ß-j_ = ßg = 0 and 

ml    2 an = - kl" V n = 1, 2 

and equations (lU), 

Bi = M1 - vi2 k7 

-Wi/kg 

B3= A3x" V5 kiy 

= 0 
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The last equation is not very convincing as it stands, since it gives 
Bo as a.product of A?,  which is almost zero, and of the large 

factor mi/mg. But one may check the result by first finding an exact 

expression for B3 and then neglecting nu against m-^. 

From the results it is seen that only the low-frequency motion 
(Aj_,  B-jJ is of importance and that the ratio x2: x-^ is at all times 

the same as for the static deflections, uninfluenced by the presence 
of the unsprung mass. 

The second and fourth of equations (l8) may be handled in the same 
way. The result is this: 

Ak  = -V 
^3/2/  mx \l/2   kxk2 

N  \ki + k2/    (k1 + k2)
2 

BQ = V 
1/2/^1/2 

Bk = V| 
,y./2/   mi    \i/2     k2 ,fer/  mi 

\mi/    lki+ •Kp I        k--\   ~^~  -Kp 

Here again it is seen that for x-,  the low-frequency motion (Ap J 

is by far preponderant, A^ being smaller by a factor (m2/m2j       i 

but for the displacement of the wheel (Bp, B0 the factor is only 
(\ l/? m2/ml)   '  ^n *ke low-frequency motion the ratio xg: xj is the same 

as for the static deflection, but in the high-frequency motion xp is 

much larger than x-,, the wheel moving up and down between the ground 

and the almost unmovable airplane mass. 

On the whole this analysis shows that through the presence of an 
"unsprung mass" a high-frequency motion is added to the low-frequency 
motion of the airplane. This high-frequency motion does not affect x-,, 
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but it makes a certain contribution to the forces in the shock strut and 

in the tire. Since (mg/m-A '   is still as small as 0.15, one may- 

neglect the presence of the mass m2 if the accuracy requirements are 
not too high. In view of the many arbitrary assumptions which enter the 
analysis (e.g., the value of V), one may think of neglecting m2 for 

design purposes, but one should keep an eye on it when evaluating tests. 
This rule, of course, is derived from the behavior of the undamped shock 
strut. How far it is modified by the damping can be seen only from the 
systematic numerical work which will now be discussed. 

Discussion of Numerical Results 

Dimensionless parameters.- The formulas developed in the preceding 
sections have been used to compute some typical examples.  In order to 
draw maximum information from this work, it has been done in dimension- 
less form, and therefore the choice made for the dimensionless quantities 
must be discussed before the results may be discussed. 

For the displacements x-,  and x2 and the stroke x a reference 

length is needed, and when they are plotted against time a reference 
time is needed. Since the deflections start from zero at t = 0 and 
approach asymptotically definite values, the static deflections, it 
seems reasonable to adopt the static deflection of the mass m-j_ as a 
standard of length: 

8 = mis(k+ 4) 
A simple time standard may be found in the period of the vibrations which 
the mass m-i  can make on the springs k-^ and kg in the absence of 

damping. This period is 2it/s/gj drop the factor 2ir and choose as 
time standard 

IE   . K(ki + *g) 
fg  If   k^ 

For the forces F-, and F2 the load Wj might be used as standard; 

but, since W^ depends on the horizontal speed of the airplane and on 

the angle of attack of its wings, it may have rather different values for 
different landing cases of the same airplane.  It is therefore better to 
use m-jg as a reference value. 
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Besides these variables there is a set of constants which influence 
the impact. They are the masses m-j_ and mg, the spring constants k-^ 

and kg, the damping b of the shock strut, the load W-|_ (weight minus 

lift), and the vertical velocity V of the airplane. These constants 
may be combined to the following dimensionless parameters: mg/m^, 

T-—^jr-> tT/mi> wi/mlS> and VT/5. These parameters must be chosen 

for each example. 

Influence of unsprung mass.- Of most interest in a study of the 
linear spring-damper system is the influence of the unsprung mass on 
the impact force. Since this influence is small in the undamped system, 
one may hope to find the same result when damping is present. To check 
whether this is true, a landing gear has been investigated analytically 
for two extreme values of the mass parameter,  m2/m1 = 0 and 
m2/ml = °-°50-  Values common in current practice lie approximately 
halfway between, and the choice has been made in order to make the effects 
more clearly visible. For the other parameters the following values were 
chosen: 

= 0.25 kx + kg 

bT/m-L = 0.5 

wl/ml§ = °-2 

VT/8 = 2.0 

The weight parameter lies halfway between a fully buffered landing with 

Wj = 0 and the usual assumption of Wj = - m-jg. The other three figures 

are so chosen that they correspond to an actual airplane, at least so 
far as a correspondence between a linear and a real shock strut is 
possible. 

The result of the computations is seen in figure 3(a) which shows the 
shock-strut force Fj against time t. At the start there is a definite 

difference:  The unsprung mass absorbs the first impact and the shock- 
strut force develops slowly) a slight overshoot follows; and then the 
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curves are practically parallel, the distance between them corresponding 
to the addition of the wheel mass mg to the total mass m-, + nip which 

must be decelerated. 

This result confirms the view that the maximum of the shock-strut 
force is not much influenced by the unsprung mass and that one may 
safely assume m2 = 0 when this leads to a simplification of the 
theoretical or numerical work. However, this simplification may not be 
admissible when the wheel spin-up must be considered. Figure 3(b) shows 
the force F2 between the wheel and the ground, and here it appears 

that in the early stage there is a considerable difference between the 
two cases such that F2 and hence the drag load will increase with the 

unsprung mass. 

Influence of damping.- High damping in the shock strut is desirable 
since it dissipates the kinetic energy of the airplane and thus prevents 
repeated rebounding. The influence of damping on the landing impact may 
be seen in figure h.    Here the force F2 on the wheel and the stroke x 
of the shock strut are plotted against time for the following set of 
parameters: 

mg/mj = 0.025 

kl 
= 0.25 kj_ + kg 

wl/mlS = °-2 

VT/8 = 2.0 

and bT/mj = 0.5 and 1.0. In the initial stage there is not much dif- 
ference between the two curves (fig. k(a)), since the impact is caught 
by the tire, but then the rise of Fg is much faster for the case of 

higher damping; the maximum is reached more quickly but it is only 
7 percent higher than that for the case with half as much damping. The 
development of the stroke (fig. 4(b)) is on the whole similar in both 
cases, but the maximum is lower for high damping. The figures show 
that, apart from its influence on rebounding (which occurs much later), 
high damping has its pros and cons and that they must be balanced in 
each design. 
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Influence of spring constants.- In another example the influence of 
the spring constants ^ and kg is compared. The forces F±    and F2 

have been computed for 

m2/m1 = 0.025 

bT/m-L = 0.5 

W-JmxS = 0.2 

VT/& =2.0 

and for  = 0.15 and 0.25- 
kl + k2 

The standards of length and time, S and T, will not be changed 
if the sum of the reciprocals 1/^ + 1/kg is kept constant, and under 

this condition an increase of the parameter k^f^ + kg)  simply means 
that the shock strut is made stiffer and the tire softer. Consequently, 
a greater part of the total deformation will take place in the tire, and 
since there is no damping the impact force will build up more slowly. 
This is clearly seen in figures 5(a) and 5(b), which show that the 
influence is the strongest on F2-  Of course, the smaller the impact 
force, the less the airplane will be decelerated and the higher the force 
must rise at a later stage to bring the vertical motion to a stop. This 
is also seen in the diagrams, and in figure 5(c) one sees the consequences 
for the displacement xi of the airplane and the deformation x2 of 

the tire. 

Influence of weight and lift.- Remember that the notation Wx 
represents the resultant static load on the landing gear, essentially 
the difference of the weight of the airplane and the wing lift.  In the 
landing-gear literature one finds discussions of the whole gamut of 
possibilities from the buffered landing with Wx = 0 " to the pancake 

landing Wx = n^g. The present American regulations consider 

W/m]_g = 0.333 as a standard assumption.  The cases where V^/n^g = 0 

and 0.2 have been computed, assuming 



NACA TN 27^3 25 

mg/m^ = 0 

k-, vl 
^ + kg = 0.25 

bT/mj =0.5 

VT/5 =2.0 

The corresponding forces F2 = Fx are shown in figure 6,  and one 
recognizes that the difference is not very pronounced. This is easily- 
understood when one considers the maximum displacement x-^    of the air- 
plane mass.  It is 1.655 in the first case and 1.825 in the second, 
while the final static deflections will be 0 and 0.25, respectively. 
It is therefore essentially the kinetic energy of the airplane mass and 
not the weight that is responsible for the impact. 

All the examples given here show the general trend of changes which 
a change of one of the parameters will induce.  In the details much will 
be different when real shock struts with their essential nonlinearity 
are considered. 

Taxying 

When an airplane taxies on the ground, its tires and the shock 
struts have the same functions as the tires and springs of an automobile. 
Whether they will be subject to serious dynamic forces depends on the 
smoothness of the ground.  In the investigation of the taxying impact 
it has become customary to assume that the airplane rolls at moderate 
speed over a bump shaped after a sine curve. On a turf-covered airfield 
such a bump may represent a frozen molehill or a similar obstacle, but 
on a well-kept concrete runway it is difficult to discover an obstacle 
of this kind from which the length and height of the bump might be 
taken, and the same is true for the deck of an aircraft carrier. 

It is preferred therefore to assume as a standard obstacle a step 
in the ground, as it is encountered in the joints between the runway 
slabs or if a wheel should get over the edge of the pavement (fig. 7)- 
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For the mathematical formulation of the problem it is assumed that 
the airplane is taxying on the left part of the pavement and that the 
landing gear has the static deflection: 

xl = wl 
k]_ + k2 

klk2 

X2 = Wl 4 

Since taxying is done at low speed, VI±    in these formulas comes close 
to the total weight rn-jg to he carried by one shock strut. 

At t = 0 the wheel hits the step in the pavement, and for t > 0 
the term kgXg in equation (2b), which represents the force in the tire, 
must be replaced by l^{x2  + h). The equilibrium is then disturbed, and it 
is desired to know the resulting vibration.  It will be found by solving 
the differential equations 

mlxl + b(xl " x2) + k-^x-L - x2) = Wx (19a) 

mgXp - b|XT - x, (xl * ^) " kl(xl " x2) + *2X2 = ~*2h (19b) 

for the following set of initial conditions: 

kl + k2 1 

It will again be useful to write all initial conditions in terms of one 
variable.  Since it will be seen that in the present case x£ is more 
important than x±,     x2 is chosen to formulate the conditions.  The 

procedure is almost the same as that described in the section "Solution 
Not Neglecting Unsprung Mass," and the result is this: 

0:    Xo-V-.^.    xo = 0.    x-, = -^     •-•        ^ 
mo ^ m2 

<2 =  Wl i~> x2 = 0,    x2 = - *      x2 = -±.        (so) 
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1 ßlBl + (1 + an )B lr2 

(1 + al)2 + ßl£ 

A _ t1 + a2)B3 - ß2% 

(l + c^)2 + ß2
2 

A], = 
ß2B3 + f1 + a2)B4 

^1 + ci^j  + ß2 

Now x-[_ and x2 and their derivatives may be calculated as functions 

of time and from them, the stroke x = x-, - x~, the force on the wheel 

F0 = kgfxg + hK and the force in the shock strut 

Fl = Wl  - mlxl 

xi -M-i"t 
1  ~ mle _(^12   -  V12)A1  -  ^lVlA2j 

2uivlAl +  L^  - v^JAg     sin VjtK - 

cos v,t + 

m]_e "^2*  \\f..   2      A,  2 

& 
u^  - v2 jA3  -  2^2V2A^    cos v2t + Ü 

2u2V2A3 +  fu2
2  - V2

2
JAJ u2" - V2"-JAM sin v2t, 

An example may illustrate the mechanical content of these formulas.  The 
following set of dimensionless data is chosen: 
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nig/mi = 0.025 

kl = 0.15 
k, + kg 

"bT/mj = 0.5 

wl/mlS = 1 

h/B =0.1 

After solving frequency equation (13) one may find B,  to BL from 

set (22): 

Bx = 0.01376 

B2 = 0.0115 

B3 = O.O8636 

B^ = O.O6176 

The precision of Bg is rather poor, but it is not possible to obtain 
a more accurate value unless the data of the problem are given with such 
accuracy that a computation with more than slide-rule accuracy would be 
justified. However, B? is multiplied in equation (21b) with a factor 

which increases rather slowly with t, and the term does not reach an 
important magnitude before the essential phase of the impact is passed. 
The displacement x2 of the wheel is shown by the solid line in figure 8. 
The displacement x-^ of the airplane has not been plotted because it is 

almost constant, and only after a considerably longer lapse of time does 
the airplane climb slowly to the new level given by the step in the 
runway. 
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The forces F-,  in the shock strut and F2 in the tire are 

represented by the solid lines in figure 9- The force Fg jumps 

instantaneously from its static value F2 = Wj to 1.67W-p the rise 

being determined by the height h of the step and by the stiffness kg 
of the tire.  Actually this sudden increase of Fg is smoothened by 

local deformation of the tire. The force F^_ which through the shock 

strut acts on the airplane structure rises smoothly to a maximum and 
then returns in damped oscillations to its static value W-j_. In the 
present example the essential part of the impact is passed at t = 0.15T. 

The fact that the mass m^ hardly moves within that time which is 

of interest suggests simplifying the computations by putting m-, = 00. 

When this is done, equation (19a) must be dropped entirely (it simply 
yields xj = 0) and in equation (19b) there must be put 

xn = 8 = W 
kx + k2 

■1 -u - "i  kjk^r 

xx = 0 

The problem is then reduced from the fourth to the second order and its 
solution is 

Wl    ^     -at/ \ 
. Xo = —r^r- + e  (B-, cos vt + B2 sin vtj 2  kg  kj + kg 

with 

H 
b 
2mg 

V='s;f(ki + k2)fl2-b£ 

Of the initial conditions (equations (20)) only the first two remain 
valid, and from them 
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kgh 

B
2 = ^i 

With, these formulas it is rather easy to compute the deflection x2 
and the forces 

h = ki(xi - x2) + b(xi - ^) 

kl + ^2 = Wx —— kxx2 - bi2 

= w, + —Ü* e-Kt (k,Bn - buB, + bVB^) cos vt + 1  kl + ^ '    [111     1     2y 

(k^ - 'bVB1 - buB2) sin vt 

F2 " k2x2 

However, there is still a difficulty in the dimensionless representation 
of the results. When nu  is put equal to », the quantity which was 

used as a reference basis for m^,, bT, and W^ seems to be lost. But 
this difficulty is only apparent. When m^ is set equal to 00 in an 
equation, this does not mean that the mass really is infinite but only 
that the inertia is intentionally overrated.  Nevertheless, there is a 
certain weight m-j_g to which the load (weight minus lift) W^ and the 

weight m2g of the wheel may be referred and which will produce a 
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certain static deflection 8. To this deflection the height h of the 
step is referred, and the damping b is handled by writing 

ml  ml ' 

_b 
m ■is V 

With this interpretation of the dimensionless quantities, the 
results of the simplified theory may be plotted in the same diagrams 
which were used before. They are represented by the broken lines in 
figures 8 and 9- 

These curves show the following features:  (l) In the domain of 
interest they are so close to the exact curves that they can hardly be 
distinguished.  (2) For large values of t they have different 
asymptotes.  This is easily explained.  When x-, = Constant, the springs 

will find themselves at last more compressed than they were before the 
impact. The wheel can therefore not rise by the full height h of the 
step, and the forces Fj = F2 will be higher than Wj.  However, this 

deviation between the two solutions is of no practical importance, not 
so much because of its small magnitude but because of its late occurrence. 

It is of some interest to study the extreme case that m-^ = °° 

and ni2 = 0. Since the mass m2 is responsible for the difference 

between the forces Fj and F2, it is seen from a glance at figure 9 

that this simplification of the problem goes too far to yield results 
of immediate practical value. The formulas therefore will not be 
reproduced, but some points computed from them have been entered in the 
force diagram (fig. 9). This line of dots which represent both F]_ 

and F2 shows approximately how the solution will be changed if the 

unsprung mass m2 is substantially decreased:  The sudden rise of F2 
is the same, but the following decrease is faster.  The force F]_ rises 

more rapidly (in the limiting case has the same discontinuous increase 
as F2), and its maximum will be higher the more n^ is decreased. This 

shows that in taxying it is not advantageous to have the unsprung mass 
too small. 
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INTENTIONAL NONLINEARITIES 

The kind of shock strut considered in the section "Linear Spring- 
Damper Systems" is the only one which leads to linear differential 
equations. The spring terms in these equations correspond to the action 
of helical or other steel springs, and such springs were used to some 
extent in early shock struts. Modern shock struts use air as an elastic 
material, and air does not show linear elasticity unless there is time 
enough to dissipate the heat generated "by compression. However, the 
nonlinearity introduced by a pneumatic spring is not severe, even in 
the extreme case of adiabatic compression. 

Quite different is the situation with the damping term in equa- 
tion (lb). Viscous damping is never realized in shock struts, their 
damping being produced by the acceleration of oil squeezed through 
narrow orifices or slots.  If the cross section of the orifice does not 
vary, one has a velocity-square damping, and this already presents an 
essential nonlinearity. But more than-this, the necessity of making 
the best use of the structural weight of the landing gear has led to 
the introduction of a metering pin which changes the width of the 
orifice in such a way as to make the impact force increase quickly to 
its peak value and then stay at this value for a considerable time. 
The nonlinearity which the metering pin introduces into the differential 
equations is intentional and essential, and one has to study the equa- 
tions of motion with the corresponding damping term. This will be done 
in this part of the report and, since there is no additional difficulty 
connected with it, the nonlinear elasticity of the air spring will also 
be included. 

Differential Equation of Oleo Strut 

Oleo struts are built in different forms (fig. 10). They all have 
this in common: A piston moves in a cylinder, and there are two chambers, 
separated by a diaphragm and connected by an orifice. The lower chamber 
is filled with oil) the upper one, partly with oil and partly with air. 
When the strut is compressed, oil must flow from the lower to the upper 
chamber, and there may or may not be a metering pin which fills part of 
the orifice and makes the remaining gap depend on the position of the 
piston. 

The pressure p^ in the upper chamber depends only on the air 

volume and hence on the position of the piston. The pressure pg in 
the lower chamber is greater by the pressure which is needed to squeeze 
oil through the orifice. The difference is proportional to the square 
of the piston velocity and thus produces a damping of the shock-strut 
motion. 
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The relation between the force F,  transmitted through the shock 

strut, the stroke x, and the rate of stroke x will now be established. 
In addition to the notations explained in figures 10(a) and 10(b), the 
following symbols for the different cross-sectional areas are used: 

AQ      inner cross section of barrel at oil level 

A^      total cross section of piston 

A2      inner cross section of piston in figure 10(b) 

When the strut is fully expanded and at rest, there will be a 
certain pressure p0 in both chambers and a force up to the limit 

Fo = PoAl 

may be applied without displacing the piston. 

When the piston is displaced, the content of the chambers is 
decreased by xA-j_ and, since the oil is incompressible, the air volume 
must decrease by this amount: 

xA1  = (z0 - z)A0 

The collapse of a shock strut under the landing impact takes less 
than 1 second, and one might think that this time would be too short to 
allow for much heat transfer.  Then the compression of the air would 
follow the adiabatic law 

7      7 
Plz = PoV 

with 7 = lA.  There is, however, a very efficient cooling of the air 
through the jet of cool oil which is shot vigorously through the orifice 
and scattered on the cylinder walls.  It may therefore be justified to 
assume a much lower value for the exponent, say 7 = 1.1 or even 
isothermal compression with 7=1. To decide this point, temperature 
measurements in the air chamber would be needed. 
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Elimination of z from the last two equations yields the following 
expression for the pressure in the upper chamber: 

, zoVAi Y 

When the piston is displaced, the volume of the lower chamber is 
decreased and oil must flow through the orifice into the upper chamber. 
In the case of figure 10(a) the rate of the oil flow is Ajk',  in the 
case of figure 10(b) it is A2x, and the oil velocity in the orifice is 

v = 
AjX 

"AT 
or 

A2x 

Here A3 represents essentially the area of the gap between the 

metering pin and the edge of the orifice, inclusive of an orifice 
coefficient, if necessary.  This gap area depends in a known way on 
the stroke x. But Ao includes also any other leakage between the 

two chambers, and such additional gaps may depend on elastic deforma- 
tions and hence on the pressure p2. Complications are avoided by 

disregarding this fact and assuming that A3 is known or sufficiently 

estimated as a function of x alone. 

The oil is accelerated to the velocity v by the difference 
between the pressures p2 and p-j_ in the two chambers according to 

Bernoulli's equation 

- 1 2 P2 " P]_ = TpV1 

where p is the density (mass per unit volume) of the oil. Taking the 
last two equations together, a relation is obtained between the pres- 
sures and x: 
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pA 
P2 - PX 

or 

1 ^2 
2A~ 

PA, 
P2 " PX =   2 

2A3 

2. 
2  -2 x 

> (24) 

respectively, for figures 10(a) and 10(b). 

' In this form, the relation holds only for the upward stroke. 
During the recoil motion of the piston the oil moves in the opposite 
direction through the orifice and the pressure in the upper chamber is 
the higher one. To cover this motion, one must at least write p-, - pp 

instead of p2 - V±    in equations (24). However, even this will not 

really describe the recoil motion, for the following reason:  The oil 
jet which is shot in the upper chamber during the upstroke is so 
vigorous that air and oil get thoroughly mixed, and this foam is squeezed 
back during the downstroke.  It is therefore scarcely possible to calcu- 
late the details of the downstroke until experimental information becomes 
available concerning the degree of mixing and the density p which should 
be used in equations (24) for this phase of the motion. 

In figure 10(a) the force acting downward on the piston is simply 

Fl = AlP2 

AlPl + Ax(p2 - pj 

In figure 10(b) part of the piston protrudes into the upper chamber 
and is there exposed to the pressure p^. The total force is therefore 

in this case 

Fl = (Al " A2)P1+A2P2 

A1P1 + A2(P2 " Pi) 
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With equations (23) and (24) this yields for figure 10(b): 

/ ZoAo/Al Y  pA23 .o Fi = AiP0H71T  + ~\ * (25) 
\zoAo/Al - V   2A3

2 

and for figure 10(a) the relation is the same except that A2 must be 

put equal to A1.    Equation (25) is the equation of the oleo-pneumatic 
shock strut. 

For obvious reasons real shock struts differ from the idealized 
figures 10(a) and 10(b) in that the upper end of the piston is so 
shaped that it touches the wall of the barrel.  In this way a separate 
annular space is created between the plunger piston and the wall of 
the barrel which is usually connected by good-sized holes with the 
upper chamber. The oil flow through these holes may add some damping. 
It is easily possible to take care of this effect by a correction of 
the factor of the second term in equation (25). 

Dynamic Equations for Landing Impact 

For this study it will be assumed that the force in the tire 
follows a linear law: 

but that the force Fj in the shock strut depends nonlinearly on the 

stroke x and on the rate of stroke x: 

Fx = Fx(x, x) 

the function F1    being given by equation (25). 

The equations of motion are essentially the same as equations (2) 
except that the terms 

"b(xi - x2) + k-jfx-L - x2)  = bx + kjx 
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must be replaced by F-^(x, x). The equations are therefore these: 

mlx'l + Fl^> x) = Wl ^26a^ 

m2x2 - F1(x, x) + kgX2 = 0 (26b) 

Since these equations contain three unknown variables, a third equation 
is needed, the relation 

x = X-L - x2 (26c) 

The initial conditions for these equations will be different from 
those used with equations (2). Because of the prestressing of the oleo 
strut there will be a short but finite time at the beginning of the 
impact when the piston does not move and the total of the deflection 
comes from the tire. During this interval the motion is governed by 
the differential equation 

[mx +  m2) x2 + k2x2 =.V1 

and to it the initial conditions 

t = 0:    x2 = '0, '   xg = V 

must be applied. The solution is 

wl v 
c = x = —-(1 - cos (jot) .+ - sin cut 
1  ■ 2  kg (U 

2 k2 
OS     =    ;  

ml  m2 
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It is valid up to the time t = t0 when for the first time 

k2x2 = F0 

the prestress force of the shock strut. From 

W 

k2 -(1 - cos a>t0)  + - sin ajt0 = F 

one finds    tQ    and then 

Wn 1 v xo = irKl - cos a)t0)  + - sin ci)tn Kg Ü) u 

v
0 = Y~ 

sln ^o + V cos "^c 

the displacement and velocity at the end of the initial interval. With 
these quantities the initial conditions for equations (26) may now be 
written. They are 

Xi = x2 ~ xo 

xl = x2 

(27) 

J 

These conditions ought to be imposed at t = t0. For the numerical 
solution it is more convenient to start, a new time scale in which 
equations (2J) are to be satisfied at t = 0. When plotting the results, 
one should of course convert the time so that the zero is at the moment 
of first contact. 

Equations (26a) to (26c) with boundary conditions (27) must be 
solved by a step-by-step integration. As is well-known, this is done 
in the following way:  At a certain time t, the differential equations 
are used to compute the numerical value of the highest derivative of 
each unknown; then one of various integration methods is used to find 
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values of the unknowns themselves for the time t + At. The choice of 
the integration method determines the exactness of the result and the 
amount of computation work needed. This point will be discussed in 
the next section. 

The other part of the process, the computation of k^ and x2, 
is done in table 1. 

TABLE 1 

(1) (2) (3) w (5) (6) (7) (8) (9) (10) (11) (12) 

t xl xl x2 x2 X X F-^x, X) k2x2 x2 Wi - FX *x"l 

0 

In the first line of this table, columns (2) to (5) are filled 
from the initial conditions. Then columns (6) and (7) are filled with 
the help of equation (26c) and columns (8) to (10) and (ll) and (12), 
with the help of equations (26b) and (26a). The integration process 
will then yield values for the second line of columns (2) to (5), and 
then the whole procedure may be repeated. 

Simplified Equations, Neglecting Unsprung Mass 

As has been seen before, the unsprung mass does not essentially 
influence the load-stroke curve.  It is therefore of interest to 
reconsider equations (26a) to (26c) after dropping the term with m^ 

ralxl = Wl " Fl (28a) 

F1(i, x) = kgXg (28b) 

x = = xl " x2 
(28c) 

As seen already in the linear case, neglecting the unsprung mass decreases 
the order of the problem by one and the initial condition for x2 must 
be dropped. 
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Equations (28) may be handled numerically with the help of table 2, 
combined with a table for the numerical integrations. 

TABLE 2 

(1) (2) (3) W (5) (6) (7) (8) (9) (10) 

t xl *i x2 X Fl X x2 W-L  -Fl 'x'l 

0 

Here in the first line columns (2) to (k)  are filled from the initial 
conditions and the other columns, with the help of equations (28c), 
(28b), and (28a). The first step of the numerical integration serves 
to get the second line started, and so forth. 

Methods of Numerical Integration 

There exists much literature on the subject of numerical integra- 
tions and it does not seem necessary to develop here new methods or to 
describe the old ones in detail. But it appears to be useful to 
recommend methods which have sufficient accuracy without being too 
laborious, to explain their background, and to present the necessary 
working formulas in a notation adapted to the present purposes. This 
will be done here, and for further details the reader is referred to 
the literature.1 

are x 
The functions which have to be integrated with respect to time 

2_j    Xj, Xg, and, if m2 is not neglected, L. 

Let j   be any one of them and assume that, for a certain time 
t = "tn*  yn 

and yn are known- A first approximation may then be 
found for the value yn+1 of y at t = tn + At by assuming that 
y = yn is constant throughout the time interval: 

yn+i = yn 
+ yn At (29) 

^ee, e.g., Scarborough, James B.:  Numerical Mathematical Analysis. 
The Johns Hopkins Press (Baltimore), 1930, p. 
p. 2kk. 

227; second ed., 1950, 
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is When this value yn+i (in this case values of xi, ii, and x2) 
introduced in the differential equations, yn+1 is found, and now the 

integration may be improved "by using the average of yn and yn+i: 

'n+1 yn 
+ ¥?n+ yn+i) At        (30) 

In figure 11 the first formula uses the shaded rectangle as increment Ay 
and the second formula uses the shaded trapezoid, but this result is still 
not final, because with the improved yn+i the differential equation will 

yield another and better value for yn+1 which now should be used for the 

average. The procedure must be repeated until yn+1 and yn+1 no longer 

change. When the time step At is well-chosen, this should occur after 
the first or second repetition. 

An example is shown in tables 3 and k.    Table 3 is identical with 
table 2 and corresponds to the simplified analysis with mg - 0.  In 
table k  there are several consecutive lines for each time t, each of_ 
them resulting from one complete cycle of iteration. One sees that x± 

and x±    are practically settled after the first cycle and that x2 
required most of the effort. The computation may be speeded up if 
proper advantage is taken of this situation. One begins the second line 
of table k with the last three columns. With x2 = 1.287 inches and 
equations (28b) and (28a) the columns Fx, Wx - Ylf  and x\    of the 
second line of table 3 may be filled.  It is then possible to enter 

x = -155.2 inches per second squared in the second line of table k  and to 

perform the two integrations leading to x±    and x±    at once with the 

trapezoid formula, equation (30). The values so obtained for x±    and 

x±    will be close to the final ones, and one may now run as many cycles 

as necessary in the x2 integration and finally check x±    and x± 

again.  Great care should be taken that the next step is not started 
before a perfect result has been obtained, because otherwise avoidable 
errors would accumulate from step to step in the integration. 
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TABLE 3 

(1) (2) (3) w (5) (6) (7) (8) (9) do)   * 

t 
(see) 

xl 
(m.) 

xl 
(in./sec) 

*2 
(in.) 

X 

(in.) 

Fl 
(it) 

X 

(in./sec) 

i2 
(in./sec) 

«i -n 
(it) 

xi 
(in./sec2) 

0 0.988 119.5 O.988 0 12,350 0 119.5 -12,350 -II9.2 

.0025 1.286 119.2 I.287 0 16,090 15.0 104.2 -16,090 -155.2 

.0025 1.286 119.2 1.268 .018 15,850 14.2 105.0 -15,850 -I53.O 

.0050 1.583 118.8 1.530 .053 19,120 18.6 100.2 -19,120 -184.7 

.0050 1.583 118.7 1.524 .059 19,060 18.4 100.3 -19,060 -184.0 

.0075 1-879 118.3 1.775 .104 22,200 20.5 97-8 -22,200 -214.2 

.0075 1.879 118.2 I.772 .107 22,170 20.3 97-9 -22,170 -214.0 

.0100 2.174 117.7 2.017 • 157 25,200 21.3 96.4 -25,200 -243.4 

.0100 2.174 117-7 2.015 .159 25,200 21.3 96.4 -25,200 -243.4 

TABLE 4 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

t *1 A*l *l tol xl *2 AX2 x2 
(sec) (in./sec2) (in./sec) (in./sec) (in.) (in.) (in./sec) (in.) (in.) 

0 -II9.2 
-O.298 

119.5 
0.298 

0.988 119.5 
0.299 

0.988 

.0025 -155.2 
-343 

119.20 
.298 

1.286 104.2 
.280 

I.287 

.0025 -153.O 
-.340 

119.16 
.298 

1.286 105.0 
.280 

I.268 

.0025 
-.382 

119.16 
.297 

I.286 
.262 

1.268 

.0050 -184.7 
-.422 

II8.78 
.297 

1.583 100.2 
.256 

1.530 

.0050 -184.0 
-.421 

118.74 
.297 

1.583 100.3 
.256 

1.524 

.0050 
-.460 

118.74 
.296 

1.583 
.251 

1.524 

.0075 -214.2 
-.498 

118.28 
.296 

1.879 97-8 
.248 

1.775 

.0075 -214.0 
-.498 

118.24 
.296 

1.879 97-9 
.248 

1.772 

.0075 
-.535 

118.24 
.295 

1.879 
.245 

1.772 

.0100 -243.4 
-.572 

117.70 
.295 

2.174 96.4 
.243 

2.017 

.0100 

, 

117.67 2.174 

. 

2.015 
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In practical computation work it is more convenient not to write 
all the lines shown in tables 3 and 4 but to erase each figure as soon 
as it can be replaced by a better one. All that is then left of table 4 
is shown in table 4(a). As one may see, this table has the great advan- 
tage that the figures needed for averaging always stand close together. 

TABLE 4(a) * 

(1) (2) (3) w (5) (6) (7) (8) (9) 

t kl Axj_ *1 Ax, xl i2 AXg x? 
(sec) (in./sec2) (in./sec) (in./sec) (in.) (in.) (in./sec) (in.) (in.) 

3 -II9.2 
-0.340 

119.5 
0.298 

0.988 119.5 
0.280 

0.988 

.0025 -I53.O 
-.421 

119.16 
.297 

1.286 105.0 
. 256 

1.268 

.0050 -184.0 
-.498 

118.74 
.296 

1.583 100.3 
.248 

1.524 

• 0075 -214.0 
-.572 

118.24 
• 295 

1.879 97-9 
.243 

I.772 

.0100 -243.4 
• 

H7.67 
• 

2.174 96.4 
• 

2.015 

• • • • • • 

* • • • 
' 

• 

The procedure may be accelerated considerably if at the start of a 
new step a good guess is made for the new increment instead of first 
computing a poor approximation with equation (29).  If this is done and 
if the step At is chosen small enough, the method works rapidly and 
nevertheless develops good accuracy. 

Most of the criticism which this method has received in the litera- 
ture applies only to its use in problems which require a much higher 
accuracy than does the landing-impact problem.  In this case slide-rule 
accuracy will always be sufficient, and this can be obtained by the 
trapezoid integration without resorting to painfully small steps. 

However, the method has the disadvantage that one never knows exactly 
how large the error is. This drawback will be avoided if the straight 
line in figure 11 is replaced by an interpolation parabola. This•may be 
done as soon as four or five successive values of y have been determined. 



NACA TN 27^3 ^ 

Through five consecutive points (fig. 12) a parabola of the fourth degree 
may be fitted, and the coefficients of the corresponding polynomial in 
t may be written in terms of the ordinates yn_lp ^-3* ' ' ' yn or> 

better, in terms of y  and of a set of differences of increasing order 

Vn = yn " yn-l 

^yn 
= Ai^n - Aiyn-i 

and so forth which may be computed in the following scheme: 

t y Axy AQy A3y \y 

^n-k Vn-k 

"^-3 yn-3 Vn-3 
^-2 yn-2 Vn-2 A&XI-2 

Vl yn-i Aiyn-i ^n-l Vn-1 

*n yn Vn ^n A3yn Al^n 

The polynomial may then be integrated over any one of the intervals At 
and in this way improved values for the increments Ay may be obtained. 
They are computed from the following formulas: 

Ar* = yn - yn-i 

= At(yn - I A^ 12 ^n - 2£ A3yn " 72Ö Vn (31a) 

^n-i= yn-i - yn-2 

At(yn -  2 Vn + 4 ^n + ~k A3yn + jk AWn ) (31b) 

ASTn-2 = yn-2  " yn-3 

= At /■       5 *  •       23  A   .       3 ... 19     ■ . 
\yn - 2 Aiyn + ^ A2yn - 8 A3y* - 720 A^n . ) (3lc) 
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From these Ay's improved values of the y's are obtained.  When 
they are introduced in the differential equations, better values of the 
derivatives will be found, and this procedure must be repeated until 
the results become stationary. This should occur after two or three 
cycles.  If it takes longer this indicates that the time step At was 
chosen too long, and one should at once make a new start with shorter 
intervals. On the other hand, if the final values are hit at the first 
stroke, this generally indicates that the time step was chosen too short, 
and one should start again with a greater At or continue until eight 
lines are completed and then double the step by dropping every other one. 

When this polynomial method is applied to the landing-gear problem, 
columns (l) to (6) of table k  must be replaced by table 5, and the columns 

TABLE 5 

(1) (2) (3) w (5) (6) (7) (8) (9) do) (11) (12) (13) (ih) 

t *1 
AA Agx-L AÄ A4kl Axj xi 

AA Agi-L A3*l Vl Axj_ xi 

- 

- • 

• • • 

• 

• 

• 

• 

• 

• 

referring to Xg by a similar table or an abridged version, depending 
on Whether equations (26) or (28) are used.  The results of the trapezoid 
integration are introduced into column (2), differences in columns (3) 
to (6) are computed, and then column (7) is filled with the help of 
equations (31), identifying y with x-^. From the increments in 

column (7) values of x^ in column (8) may be found which are already 
better than those of the trapezoid integration. They may at once be 
used for computing the differences in columns (9) to (12), the increments 
Axn, and the values x-^, again using equations (31) • 

When this is done with the figures of table k,   it is found that 
neither the x-j_'s nor the X]_'s are capable of improvement, but Xg 
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is changed appreciably. The final state of the integration for X2 is 

shown in table 6. Practically all the correction is due to the first 
time interval. 

TABLE 6 

(1) (2) (3) W (5) (6) (7) (8) 

t 

(sec) 

i2 
(in./sec) 

Al*2 AQZ.2 A3x2 \i.2 Ax2 
(in.) 

x2 
(in.) 

0 

.0025 

.0050 

• 0075 

.0100 

119.5 

105.2 

100.5 

97-9 

96.5 

-14.3 

-h.l 

-2.6 

-l.k 

9.6 

2.1 

1.2 

-7-5 

-.9 6.6 

0.277 

.256 

.248 

.242 

0.988 

I.265 

1.521 

1.769 

2.011 

When this polynomial method is applied - and the example demonstrates 
that it may be worth while to do so - then it will be reasonable to use 
it not only for checking and correcting but also for integrating ahead. 
To do this, one must extrapolate the polynomial in figure 12 beyond tn 
through the next interval and then integrate y from tn to tn+]_. 

The result may be expressed by the set of differences used before: 

A^n+i = yn+i - yn 

(1       5   •   ^       251 
yn + - Aiyn + 12 Vn + cT A3yn + 7^ A^n (32) 
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With the help of this formula one might find in table 5 the values 
of Ax-p  x-^, Ax-]_, an-d xi in "the next line.  But actually it is neces- 

sary to use equation (32) only once, preferably for integrating °x'p 

(or x2, if m2 = 0 J, and then approximate values for the other deriva- 

tives may be procured in time to do all other integrations at once with 
equation (31a) which is more exact and less influenced by the higher 
differences. 

When thus a new line in all tables (table 1 or 2 and the integra- 
tion tables) has been filled, equation (31a) is used repeatedly to 
improve x„ and x-^ as long as they are capable of improvement. 

As soon as the columns for the derivatives (columns (2) and (8) 
in table 5) fill up, one might extend the difference scheme toward 
differences of higher order, but the farther one goes to the right, the 
smaller and the more erratic the differences will become and they will 
not be able to influence the increments computed from equations (31) 
and (32).  In general the time step At should be chosen such that the 
fourth-order difference may be neglected. 

Except for the start of the computation which is always a little 
irregular, the higher differences should be rather small before they 
become erratic^ otherwise one must either increase the accuracy of the 
derivatives by carrying more digits or decrease the step At.  If it is 
intended to carry more significant figures, one should keep in mind that 
a many-digit machine computation is a wasted effort, if somewhere in the 
process a figure must be read from a graph, for example, the effective 
orifice area Ao as a function of the stroke x. 

In order to check the accuracy of the two methods - trapezoid and 
polynomial - an example of a linear shock strut has been computed with 
the following data: 

m-L = 103.6 lb sec^/in. 

nip = 0 

b = 500 lb sec/in. 

kx = 2800 lb/in. 

k2 = 12,500 lb/in. 

W = 0 

V = 120 in./sec 
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The results for this example can be compared with the exact solution, 
equations (9) and (lO). The following values were obtained for the 
Impact force F-.: 

Fl 

t 
(sec) 

(lb) 

Exact 
At = 0.01 sec At = 0.02 sec 

• Trapezoid Polynomial Trapezoid 

0.0^ 38.1 x 103 38.13 X 103 38.03 X 103 38. Vf x 103 

.08 52.0 52.1 52.0 52.3 

.12 56.2 56.2 56.2 56.4 

.16 55.7 55-8 55-7 55-8 

.20 52.5 52.6 52.6 52.6 

.2k 47.6 47.6 

Evidently, under these conditions the trapezoid method with 
At = 0.01 second is good enough. Encouraged by this Jesuit, the 
step At has been doubled. The results of the trapezoid integration 
are shown in the table. The polynomial method proved to be extremely 
tedious and was not pursued further when after several hours of computa- 
tion the first four lines had not yet stabilized. However, it was found 
practical to start with the small interval and double the step as soon 
as possible. The polynomial method with At = 0.01 second was carried 
to t = 0.08 second, and then the results for t = 0.02, 0.04, 0.06, and 
0.08 second were used to start the polynomial method with the double 
interval. This computation was carried up to t = 0.20 second and 
yielded results identical with those obtained for the shorter steps. 

Numerical Example 

As an illustration of the methods just described an example has 
been worked out. The data chosen and the metering pin correspond closely 
to those of a recent American airplane. The data are these: 

Al = A2 = 39'8 S(3 in- 
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AoV '   „ . 
—— =23.5 in. 

p0 = 310 lb/sq in. 

p = 8.42 X 10~5 lb sec2/in.^ 

7 = 1.1 

kg = 12,500 lb/in. 

WT = 0 

10 ft/ sec 

The effective orifice area is shown by the heavy line in figure 13 
as a function of the stroke x. The low part at the left-hand side of 
the diagram represents the bulbous end of the metering pin. 

The shock strut is prestressed with the force 

F0 = p0A2 = 12,350 lb 

Until the impact force has reached this value, only the tire is deformed 
and the simple formulas mentioned after equations (26) apply. They 
yield t0 = O.OO88 second, X0 = O.988 inch, and V0 = 119-5 inches per 
second.  These are the initial conditions for the numerical integration 
of equations (25) and (28).  This integration was started by the 
trapezoid method, using equations (29) and (30), and the time step At 
was so chosen that at least a few intervals would pass before the first 
break in the curve A3 = Ao(x) was reached. This is possible with 

At = 0.0025 second, and the first lines of this computation are shown 
in tables 3 and k  (where t is counted from the beginning of this integra- 
tion, not from the first contact between tire and runway). When four 
steps were completed, the polynomial method was started and the results 
of these steps were improved. The computation was carried on to 
t = 0.0250 second with x = 0.571 inch, X]_ = 3^907 inches, and 
x2 = 3-336 inches. This is sufficiently far past the first break in 
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A?{x)    that it was possible to double the step. A new integration table 

was started with the results for t = 0.010, 0.015, 0.020, and 0.025 second 
and it was carried on with At = 0.005 second until t = O.060 second with 
x = 1.939 inches. The next step would have led beyond the second break 
in the curve A3(x)  and hence to large values in the difference schemes. 

Therefore, it was necessary to return to the shorter time step 
At = 0.0025 second. This makes it necessary to interpolate values for 
the half intervals. To keep up with the accuracy of the integration, 
this must be done with the help of the same interpolation parabolas from 
which equations (31) and (32) are derived. With the notations used the 
following formula holds: 

yn+1 = |(yn 
+ yn+i) - jgfc&**i + *»w) + 255(^+2 + M^)    133) 

in which the last term is often negligibly small. 

With the help of this formula a new integration table was started, 
beginning with t = 0.0450, O.OV75, • • • second. When it came to 
t = 0.0775 second, the next and last break in the A3 diagram was 

reached and the higher differences rose so high that it became necessary 
to reduce the step to 0.00125 second. Eight lines beyond the discon- 
tinuity the step was increased to At = 0.0025 second and soon thereafter 
to 0.005 second. At t = 0.l4 second it was realized that the higher 
differences had become so small that the interval could again be doubled, 
and with At = 0.01 second the computation was carried until 
t = 0.27 second, when x became negative. 

The example which was chosen here as a test specimen for the 
numerical integration is one of the most irregular possible. Most of 
the computation effort was spent on the bulbous end of the metering pin. 
As soon as the last corner in figure 13 was passed, the work proceeded 
rather quickly to its end. When the pin is shaped more gently, or when 
there is no pin at all, it will be possible to start, say, with 
At = 0.005 second and to change after some time to At = 0.01 second, 
without the many tedious changes which were necessary in the present case. 

The results of the computation are shown in figures 1^ and 15- There 
is a double time scale in the diagrams, one beginning at the first contact 
and one at the time tQ when the numerical integration begins. 

Figure ik  shows the stroke x and the displacement x-|_ of the 

airplane. There is a first, short phase during which only the tire is 
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deformed and x = 0. Then the shock strut begins to work but, because 
of the bulbous end of the metering pin, the strut collapses, at first 
rather slowly.  Later it catches up, and the curves x and x^_ approach 
each other, indicating that the load maximum is passed and that the tire 
expands. 

Figure 15 shows the load and its breakdown into the damping force 
and the elastic (air) force according to the two terms of equation (25). 
Because of the bulbous end of the metering pin the damping force builds 
up rapidly, but then the orifice opens up and the increasing air pres- 
sure in the shock strut cannot compensate the decline of the damping 
force. 

Dimensioning of Metering Pin 

For reasons of weight saving it is desirable that the shock-strut 
force rise quickly to a high value and then remain at this height for a 
sufficient time to bring the mass m^ to rest.  As a practical means 

for this purpose, the metering pin has been introduced into the design 
of shock struts. Now, since there is but one metering pin, it will not 
be possible to obtain ideal results for different impact conditions, but 
it is possible to pick out one landing case of particular importance and 
to shape the metering pin so that in this case a desired load history is 
obtained. The shape of the pin which has been found for this case must, 
of course, be subjected to a critical study in two respects:  It must be 
acceptable to the workshop, and it must yield at least tolerable load- 
time diagrams under other landing conditions.  Th^ final compromise is 
a true engineering decision which cannot be replaced by an analytical 
device. 

There is no need to specify exactly how the impact force should rise 
from zero up to a certain level.  In this first part of the load history 
the tire has an important influence, and it will be enough to choose the 
orifice opening A3 so that not too much stroke is lost while the force 
builds up. 

But when at a certain time t = t'  the force F^_ has reached a 
certain value, say F^ = F', then it may be desirable to keep it constant 

on this level.  If it is agreed to neglect the unsprung mass mg equa- 

tions (28) are simply 

m-jxi + F' = W-L (3^a) 

F' = kgXg (3^) 
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and it follows at once from equation' (3^b) that x£ = Constant, say, 

Xp — Xp 

Xo = 0 

Equation (3^) presents a simple integration problem and yields 

W - F' 
xl = xl' +  (t - f) 

m. 

xx = xx' + Xl'(t - V)  + -^-(t - f)2 

where x. ' and Xi' xx  are the values which the variables have assumed 
at t = t'. From equation (28c) 

x = x-, 

X = X-|_ - Xjp' 

av? ?!!e ValU6S may noW be lntroduced in equation (25) of the oleo strut, 
which then yields A^: 

A 3^      pA23x2 
F'   - A,p, 

z A        \7 
00       \ 

1 °lzoAo - xA] (35) 

This idea has been applied in two ways to the numerical example of 
the preceding section. 

When looking at figure 15, one might think it useful to keep F^ 

for some time on its peak level, thus decelerating faster the vertical 
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motion of• the airplane without imposing a higher dynamic load on it. 
This would result in a saving in stroke and hence in weight of the 
shock strut. In this way the curves marked "I" in figures 16 and IT  • 
have been obtained.  The corresponding orifice area is shown in fig- 
ure 13 by the line I. To keep the impact force at its peak level, the 
orifice area must be decreased relative to the original design, and it 
comes down to zero when the motion of the airplane is stopped. The 
steep descent at the end of this curve is, of course, not acceptable 
for the design, since it means a complete plugging of the orifice and 
would lead to a high load peak in a case of harder landing; but the 
upper part of the curve may lead to an improvement of the design. 

One might think of another modification of the load-time curve, 
cutting away the peak and keeping Fx as long as feasible on a medium 
level, say at F' = k6,600  pounds. When this is done, the curves 
marked "II" in figures 13, 16, and 17 result. They show that in this 
case a slightly longer stroke is needed than in the original design, 
but there is a considerable saving in dynamic load. 

Since the rise of Fx is interrupted in this case, the orifice 
must be opened wider, and figure 13 shows that most of the bulbous end 
of the pin must be removed. The transition must, of course, be smoother 
than that shown in the diagram, and this would lead to a rounding of the 
corner in the load-time diagram (fig. 17)- Except for this necessary 
modification and for the steep end of the A3 curve, the solution seems 
acceptable, provided that the pin shaped in this way proves to be satis- 
factory in other landing cases. 

But there is still one essential point that needs discussion. 
Figure 18 shows the velocities X;L and x for all three cases. For 

the original pin heavier lines have been used and the two modifications 
are marked "I" and "II." The first modification does not show anything 
in particular, but for the second modified pin x jumps suddenly from 
one value to another and so does ig = ii - x. Now, a sudden change of 

the velocity x2 will, of course, meet with the inertia of the unsprung 

mass, and the metering pin II cannot be accepted without discussing this 
influence. 

Starting from equations (26) and putting Fj_ = F*: 

m^xi = W^ 

n^Xg + kgX2 = F
1 
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The first of these equations is identical with equation (34a), and the 
second yields an undamped vibration: 

Ff x0 = r— + A cos cu(t - t') + B sin üß(t - t1) "2 *2 

CD = ^2/m2 

Now, at t = t', when this vibration begins, 

x2 = x2* = ^"/^ 

x2 = x2 

and hence 

x2 
X2 = Xp' +   sin (ü(t -  tT) 

When it is assumed in the example that n^/m^ = 0.025, the circular 
frequency of these vibrations is <D = 69-5 second"1, that is, about 
10 cycles per second. 

The stroke x will show the same undulation as x2 and so will 

the metering pin.  Of course, nobody would think of building a metering 
pin of that shape, in particular since the length and location of these 
undulations would depend on the arbitrary choice of the conditions under 
which FQ_ is kept constant. As soon as a streamlined metering pin is 
chosen corresponding to the simplified analysis, the force F-^ will 
fluctuate slightly and thus provide the necessary damping for the transient 
vibrations of X2 and x. 

There is still a better way of handling this last question. Since 
it is not feasible anyway to make a metering pin with a sudden change of 
cross section, it is better to assume a force diagram on which the corner 
is well-rounded, say by a parabola 

o 
F-, = c-, + Cgt + Cot 

which is so chosen that there is no large discontinuity in dF^/dt. 
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When this foree-time relation is introduced into the equations of 
the landing gear, they may easily be integrated, and the resulting 
expressions for x and x along with F may be introduced into equa- 
tion (35) to find Ao and hence the cross section of the metering pin. 

The short broken line at the outset of the horizontal line marked 
"II" in figure 17 represents such a parabolic rounding of a corner in 
the force diagram. The corresponding values of x and Ao have been 

indicated by broken lines in figures 18 and 13- One may recognize that 
no great change of the metering pin is needed to make the wheel motion 
much smoother, and the corner in the force diagram might still be rounded 
much more without a substantial loss of deceleration for the airplane. 

ADDITIONAL NONLINEARITIES 

Tire 

The elastic resistance of the tire depends only in -small part on 
the elasticity of the rubber and is essentially due to the compression 
of the enclosed air. During the landing impact this compression is 
nearly adiabatic and therefore the relation between the tire pressure 
and the deflection x^    is nonlinear.  On the other hand, the relation 

between the pressure and the force Fo is nonlinear also because the 

tire flattens.  On the whole, these and some other influences seem to 
compensate to some extent, and load-deflection curves from tests may be 
fairly well approximated by a straight line.  This is illustrated by 
figure 19 which shows such a test result. 

For design purposes it does not seem worth while to replace, under 
these circumstances, the linear relation (equation (la)) by anything more 
complicated.  However, for the evaluation of tests it may be advisable 
to use the best available information on the behavior of the tire. 

The nonlinearity of the tire becomes severe when it comes to 
bottoming.  Then the force Fo may rise to high values without an 

appreciable further increase of x2-  In general, bottoming should, of 
course, be avoided, but when it comes into consideration, then equa- 
tion (la) can no longer be applied, and it must be replaced by the general 
relation 

F 2 ,(x2) 
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which represents an empirical function determined from tests. The 
equations of motion are then these: 

mlx'l + Fl(^ x) = wi (36a) 

mgX2 - Fi(x, x) + F2(x2) =0 (36b) 

instead of equations (26a) and (26b). 

Because of the prestressing of the oleo strut these equations are 
not valid until the shock-strut force has reached the prestress value Fc 
For this initial phase of the impact the procedure described in the 
paragraph following equation (26c) must be applied. Since it covers 
but a small part of the whole impact, one may use there the linear 
law F2 = k2x2, ^

e sPring constant kg being taken from the initial 

tangent of the load-deflection curve of the tire: 

k2 = 
dF, ife) 

dx2 
-"x^O 

For equations (36a) and (36b) then the initial conditions (equa- 
tions (27)) are the same as those for equations (26). The equations are 
solved by numerical integration and table 1 may be adopted, changing 
only the heading of column (9) where F2 is written instead of k>x2 

and then using a graph of the function F2(x2) to fill this column. 

In most cases it will be possible to neglect the mass n^. Then 

equations (36) are rewritten in the form 

mlkl = Wl " F2(x2) (37a) 

Fx(i, x) = F2(x2) (37b) 

which corresponds to equations (28). For the numerical integration use 
table 2.,  writing F2 = F^ at the top of column (6) and filling this 
column with the help of the graph for F2(x2J. 
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In both cases, equations (36) and (37), the integration step must 
be decreased appropriately when approaching the region where the tire 
bottoms. 

Kinematic Nonlinearities 

In the equations of motion one needs the second derivatives of the 
displacements x-i  and x2, the accelerations of the masses m-^ and m2, 

respectively. For the shock strut, the stroke x is needed. Thus far 
it has always been assumed that x is equal to the difference x-j_ - x2. 

However, this relation holds only in the simple case, when the upper part 
of the shock strut (usually the barrel) is rigidly connected with the 
airframe and the wheel is attached directly to the lower part (piston). 
A correction is already needed when the shock strut is inclined from 
the vertical (fig. 20). In this case 

x = 
xl " x2 
cos <x 

The changes which this relation requires in the intergration schemes 
are obvious and there is no need to discuss them in detail. 

However, there are cases in which the relation between x and 
(xn - Xp) is nonlinear. Figure 21 illustrates what is meant. Most of 

these devices have disappeared from current practice, but in a time of 
rapid development it is advisable to discuss briefly how similar cases 
may be handled. For all these landing gears a nonlinear relation 

x = = f (xl " x2) (38) 

can be established by trigonometric methods. By differentiating it with 
respect to time, the relation 

.       df(xl - x2)/- .   \ X "    djfr - xgp " **) 

= f'(Xl - XgVi-L - x2) (39) 

is derived. The above two equations take the place of equation (26c) 
and the corresponding relation for the velocities. 



NACA TN 27^3 59 

Table 1 must now be replaced by table 7, in which columns (5a),' 
(6a),  and (6b) have been added. Columns (5a) and (6b) are filled from 
the preceding ones and column (6a) is filled from a formula or a graph 

TABLE 7 

(1) (2) (3) w (5) (5a) (6) (6a) (6b) (7) (8) (9) (10) (ID (12) 

t xl *1 x2 *2 xl  _ x2 X f1 xl  " x2 X Fl k2X2 •x2 Wl  "Fl xl 

for f'(x1  - x2). Then equations (38) and (39) are used to fill 

columns (6) and (7). Everything else is done as explained for 
table 1. 

When mg is neglected, table 8 is used instead of table 2. Again 

additional columns for ^ - x2\, (^ - x2), and f' are provided. 

Column (5) is filled with the help of equation (38); column (7a), from 

TABLE 8 

(1) (2) (3) w (ha) (5) (6) (7) (7a) (7b) (8) (9) (io) 
t xl xl x2 xl " *2 X Fl X f xl  " x2 x2 wl "Fi xi 

column (ha)  with a graph or formula for f^Xj -r x2); and column (7b), 
with equation (39)- 

These are very simple changes, the numerical integration being a 
very flexible instrument that can be adapted to almost every special 
requirement. 
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THE AIRPLANE AS A WHOLE 

Introduction 

In most investigations of landing gears the airplane is represented 
by a single mass m-j_ riding on a system of springs and dampers, with 

perhaps a small additional mass HU representing the wheel. All the 

preceding sections of this report are exclusively concerned with this 
model. 

However, the real airplane is a three-dimensional structure, and when 
one or more of its wheels hit the ground, it may receive not only a 
vertical acceleration but also angular accelerations about different 
axes. These angular accelerations and the rotatory motion resulting 
from them will, of course, influence the landing impact. 

A  detailed study of this phenomenon leads into rather lengthy 
computations.  Their quantitative results will depend on many details 
and may vary widely between different types of airplanes.  This section 
will therefore be restricted to some general considerations concerning 
the best method of analysis. 

There are two principal problems, the symmetric case in which both 
wheels of the main landing gear strike the ground simultaneously and in 
identical conditions, either earlier or later than the auxiliary gear, 
and the asymmetric case in which the two wheels of the main gear touch 
the ground one after the other. 

Symmetric Impact 

Figure 22 shows the side view of an airplane as far as it is of 
interest for the present purposes. The point C is the- center of gravity 
where the mass m is located. To the right is the main gear; to the 
left, the auxiliary gear vhich may be either a nose gear or a tail gear. 

In figure 22 the airplane is shown in the position which it has at 
the time t = 0, when the main gear makes its first contact with the 
runway. From this time an impact.force . Fj of increasing magnitude will 

act in each main gear and it will cause both a deceleration of the 
vertical movement of the center of gravity and a pitching motion about 
this point.  The equations of motion are 
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mz = -2F-, + W 

rü = -ZFjs 
(ho) 

where I  is the moment of inertia of the airplane with respect to its 
transverse axis. 

The resultant acceleration at the upper end of the main landing 
gear will he 

x-,   = z +  aa> 

^1 ^i*2 W 
m L  +m 

m \    hl  m 

In the section "Linear Spring-Damper Systems" there was written 

1    m-,  m-. 

and the two expressions are equivalent if one chooses 

m-. m 

i 2 1 + ma 

i 2 m   xy 
2 2  .2 a +V 
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2 
Wi = ± w_iiL l  22  . ? a  + V 

where iy = yly/m is the radius of gyration. These formulas show that 

it is perfectly justifiable to study an isolated landing gear, provided 
one does not simply use as mass m-j_ one-half of the airplane mass. 

However, this procedure is subject to two essential limitations:  It 
can be applied only until the auxiliary gear comes into action and must 
at least be modified when the rotation of the airplane leads to a sub- 
stantial change of the angle of incidence of the wing and hence to a 
change of the load W. 

Consider the second point first. The angular position of the air- 
plane is determined by the angle a between the ground and a reference 
line in the plane of symmetry of the airplane. This reference line is 
so chosen that a = 0 when all three wheels of the airplane just touch 
the ground without pressure. The angle a which is so defined is not 
identical with the angle of incidence of the wings, but the two differ 
only by a constant which depends on the design of-the airplane. 

Since only small values of a need be considered, it may be 
assumed that the lift and hence W is a linear function of a, say: 

W = W + W"a 

but since one must use numerical integration methods anyway an arbitrary 
function 

W = W(a) 

may be assumed when this appears to be necessary. The part of this 
weight which must be attributed to one main landing gear is then 

i 2 
Wx(a) = W(a)    y -y (41) 

¥*<?) 
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Equations of motion (4o) are now written in the following form: 

k'l = " mT^l " Wl) ml 
(42a) 

a = 2a 
(42b) 

Additionally, there is a relation which connects F, with x 

and x, for example, equation (25) of the oleo strut, the relation 
x = Xj - x2, and the elastic equation of the tire F2 = Fj = k2x2. 

Table 2 which is used for the one-gear problem must now be extended 
so that it may take care of equation (42b). It looks then as shown 
in table 9: 

TABLE 9 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

t xl *1 x2 X a ä Fl X x2 Wl Wl "Fl *l 
• • 
a 

0 

Columns (2) to (5) and (8) to (10) are treated exactly as are the 
corresponding columns of table 2> the first line in columns (6) and (7) 
is filled in from two additional boundary conditions (a given, a = 0). 
Also the starting value of WT will be known and must, of course, check 
with column (6) and equation (4l). Column (12) is self-explanatory, and 
columns (13) and (l4) follow from equations (42). Besides the tables 
for the integration of k^, xlf  and i2, an additional table is now 
needed to integrate ä and a. With the results of these integrations 
the second line may be started. 

Of course, this analysis does not consider the possibility that the 
pilot uses the controls to counteract the pitching movement of the air- 
plane.  If he does so, a human element comes into play which is not 
easily incorporated in mathematical formulas. This uncertainty may 
upset the usefulness of the procedure and will justify the application 



£h NACA TN 27^3 

of the simpler table given previously.  This simplification, commonly 
used in landing-gear analysis, is still more justified by the results 
represented in figure 6, which show that the exact magnitude of the 
effective weight Wj is of secondary importance for the interesting 
portion of the impact. 

Whether a simple one-gear analysis is made or the variability of 
Wj is taken into account, this computation ends at the moment when the 
auxiliary gear comes into action. The time t = t' when this occurs 
is found in the following way: During the first phase of motion the 
acceleration at the upper end of the auxiliary gear is: 

Xo = z - ben 

When it is assumed that the airplane approaches the ground with the 
vertical velocity V, but without an angular velocity, then the velocity 
x~, for t > 0 is 

L2 
x ■= V - 2 iL 

ab 

3      m  ,- 2 xy 

(43) 

Under the integral signs F-.  and W must be introduced as functions 

of t according to the analysis of the main gear. 

The displacement Xo of the auxiliary gear is best counted from 

the position in which the wheel .just touches the ground. When the 
airplane lands at an angle a (fig. 22), then x, = -(a + b)a at 

t = 0. For t > 0 

xo = -(a + b)a +    x dt (44) 
Jo  J 

and the time when this equation yields Xo = 0 is the time t = t'. 
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When W = 0 and ab < iy , the velocity Xo will decrease and 

the impact of the auxiliary gear will he softer than it would be if 
this gear had hit the ground before the main gear. If W / 0, there 
is an additional positive term in equation (^3) and, since the airplane 
is still falling under the influence of the force W, the velocity io 

may increase. When ab > iy2, then L will certainly increase, pos- 

sibly even very much so, and the auxiliary gear may strike the runway 
rather forcibly. 

When all wheels are in contact with the ground, the equations of 
motion are rather involved. When all landing gears have a spring- 
damper unit as a shock strut, no damping in the tire, and no unsprung 
mass, the problem is of sixth order.  It is of little value to establish 
the formulas for the linear case, but it is useful to develop a numerical 
procedure which may be applied in linear as well as in nonlinear cases. 

The equations of motion contain now the forces in main and 
auxiliary gears (fig. 23): 

mz = -2F1  - Fo + W 

Iydb = -2Fj_a + Fot 

<*5) 

Then there are two kinematic relations 

Xj = z + aoi 

xo = z - ben 
(*6) 

Differentiating there and then introducing z and ca    from equations (V?) 
yield 

xl = ^/1 + ^-^i-^ + » m 

2F, 

m V m 

H-r^-py^+i 
(hi) 



66 NACA TN 27^3 

These equations may be used in the following way: For each landing 
gear a single-gear analysis is started according to the instructions 
given in the section "Intentional Konlinearities." For the main gear 
it begins at t = 0 and runs exactly as explained there until t = t'. 
For the auxiliary gear it begins at t = t' with Xo = 0 and the 

value of io which follows from equation (^3). When it is not desired 

to neglect the unsprung mass, table 1 is used, otherwise table 2.  In 
either case the line for t = t1 may be filled up to the last two 
columns, but the last two columns are replaced by some columns which are 
adapted to equations (^7)- They yield x,  and kV in terms of the 

forces F of both tables, and these values are now integrated just as 
was done with x-, in table k. 

A step-by-step integration of this kind requires twice as much 
time as a single-gear analysis and will yield everything needed for 
both gears. 

One-Wheel Landing 

It is possible that a landing airplane may approach the runway 
with one wing low and that the wheels of the main gear do not hit the 
runway at the same time (fig. 2k).    There are then again two phases, a 
first one while only one wheel is in contact with the ground and a 
second one when both wheels are. 

In the first phase there is only one force Yj_,  having the 

distances a and c from the lateral and longitudinal axes, respec- 
tively. It produces the following accelerations: 

Vertical at center of gravity: 

mz = _F + w 

Angular with respect to lateral axis: 

Vv= -Fia 

Angular with respect to longitudinal axis: 

Ix&x = "Flc 
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The resulting acceleration at the upper end of the active landing gear 
is 

x-j_ = z + adL. + cd^ 

and when use is made of the preceding equations there is obtained 

Again it is useful to introduce the radii of gyration by: 

ix
2 = Ix/m 

V2 = Vm 

and to write 

FlA,        a2        c2\      w x-i   = 1 + —- +  I + _ 
<*{   1/   if)  - 

When this is compared with the relation 

x =.!i + !i ^    m-^  m-j_ 

used previously, it is seen that one must put 

m 
m1 

1 + ±- + 

V 

ml 
Wn      =    W   — 

J-           m 

c2 

iX
2 
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With these notations the impact problem is again reduced to a one-gear 
problem until the other wheel meets the ground. The time t = t" at 
which this will occur may be found in the same way as in the case of a 
two-point landing. 

The acceleration at the top of the second main gear is 

x'o = z + aiy - Cü^ 

Integrating once yields the velocity: 

V.T-±l1 + f?-7*J  I 'l**5* 

and integrating again, 

At the time t = t" when Xo = 0, the one-gear problem ends and 

from then on both main gears must be dealt with simultaneously. 

This is done as in the preceding section, but the formulas differ 
in details because there is still one degree of freedom left., the 
rotation about the transverse axis of the airplane. During this phase 
of the landing impact the equations of motion (fig. 25) are as follows: 

mz = -Fx - F3 + ¥ 

W = "(Fl + F3)a 

iA = (-*i + F
3)c 
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Besides there are the kinematic relations 

x-j_ = z + ach    + cd^ 

Xo = z + adiy - ccbjj. 

and by combining both sets of equations the following equations are 
obtained which correspond to equations {hj): 

FlL        a2   C2^ x-, = 1 + —- + —- 
mV  V2 ix2; 

X, = 1 +  - - 
3   m\  iy2  ix 

(W) 

These equations may be handled exactly in the same way as equations (47), 
with, however, the restriction that the auxiliary gear must still be 
off the ground. As soon as it makes contact, the relations become more 
involved, but it seems at present not necessary to elaborate the details 
of the third phase of the impact which then will follow. 

REVIEW OF GERMAN LITERATURE ON LANDING-GEAR IMPACT 

Before the last war in Germany almost no theoretical work was done 
on landing-gear problems, and it seems also that in other countries 
interest was low. 

During the war in Germany new and unexpected demands could fre- 
quently best be met by adapting an existing airplane type, with its 
well-established mass-production facilities. Such modifications usually 
resulted in an increase of weight without supplying additional space 
into which a larger wheel could be retracted. Frequent tire troubles 
were the unavoidable consequence, resulting in a strong impetus to 
landing-gear research. All but one of the papers reviewed here belong 
to this period of wartime research. 

When studying this German wartime literature, one must keep in 
mind during what period and under what circumstances the work was done. 
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All of these papers appeared in 19^3 and 19^ and were thus the outcome 
of a rather short period of research. They represent an intensive 
attempt to tackle a long-neglected problem. But before the work had 
yielded results of final validity, it was cut off early in 19^5 by 
the national catastrophe. More than 6 years have elapsed and the 
landing-load problem has undergone changes. Some of the statements 
made in those papers have lost interest, others are no longer applicable 
without modification, and most of the analytical methods are either 
oversimplified or too complicated. 

Nevertheless, it is still worth while to survey this literature 
briefly because it contains many of the ideas and methods which are 
still the basis of. landing-gear analysis.  Indeed, in writing this 
report the author has drawn much useful information from the German 
publications which are reviewed on the. following pages. 

The goal of the early landing-gear research was influenced by the 
attitude of official regulations. They required that a drop test be 
made in which the upper end of the shock strut was connected with a 
mass (m-,  in the notation of this paper) and the two dropped on an 

anvil. At. the instant when the anvil was struck, the weight W]_ was 
compensated by admitting compressed air to two cylinders. The load- 
stroke curve obtained by this test was then considered as "the" load- 
stroke curve of the shock strut and was employed in all landing cases 
which had to be considered in the design of the airplane.  Consequently, 
the effort of the early research was directed toward the investigation 
of load-stroke diagrams of shock struts. 

The first paper that must be mentioned here, and the only one that 
appeared before the war, was written by Michael (reference 1).  It gives 
a detailed analysis of the linear spring-damper system but pays only 
slight attention to the tire. A special feature of this paper is the 
use of spring diagrams in which the force is plotted either against the 
stroke with the rate of stroke as a parameter or, inversely, against 
the rate of stroke with the stroke as parameter.  These diagrams are 
shown also for shock struts with dry friction or with velocity-square 
dampers, and they are used for a graphical solution of the differential 
equation.  Such diagrams are no longer possible when a second spring 
(the tire) is present, and therefore they have not been employed again 
in later papers. 

The first papers of the war period were still focused on the load- 
stroke diagram. Schlaefke (reference 2) criticized the drop-test method 
and suggested replacing the buffered drop test by an unbuffered test, 
that is, omitting the air cylinders and with them a possible source of 
inaccuracy.  His paper uses the theory of the linear spring-damper system 
to establish some relations between the results of both tests. 
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In a later paper (reference 3) the same author realizes that the 
damping in the oleo strut is far from proportional to the rate of 
stroke. He compares load-stroke curves for linear and for velocity- 
square damping and arrives at the strange conclusion that the former 
look more realistic.  The method used for the analysis of the nonlinear 
problem is of interest. A "balance of kinetic and potential energy is 
established and from it, a differential equation between x as dependent 
and x as independent variable. When it is solved, the damping force 
(proportional to £2) is also known in terms of x. However, this 
approach is not possible in the presence of a tire. 

In the next group of papers the tire makes its appearance. A 
paper by Kochanowsky (reference k)  gives a very detailed analysis of 
the oleo-tire combination as shown in figure 1. Kochanowsky finds that 
the unsprung mass is of no great importance for the landing impact and 
that the problem may readily be simplified by assuming m2 = 0. The 
study of this paper (and of many others) is rendered difficult by the 
author's habit of using for all and everything dimensionless quantities 
so that the reader has to learn first a system of not very suggestive 
notations before he can follow the analysis or read the diagrams. 

Another paper by Schlaefke (reference 5) covers approximately the 
same ground. 

After having studied the linear oleo-tire system, the next logical 
step would have been to consider a nonlinear shock strut, but, inciden- 
tally, the few papers which did this were older than Kochanowsky's com- 
prehensive paper on the linear system. One of them is by the same author 
(reference 6), and it was not thought to be a study of a nonlinear case. 
It is concerned with a special type of spring which has long been used 
in railroad-car bumpers and was introduced in landing gears.  It con- 
sists of a pile of rings with conical sides (fig. 26). When it is 
subjected to an axial compression, the hoop stresses in the rings are 
alternatively tensile and compressive. During the elastic deformation, 
the rings slip on one another and the pile becomes shorter. Because 
of the slip, there is considerable dry friction, and when the load F 
is decreased, the deformation x is not immediately decreased but 
follows a law which is described by figure 27. The area of the tri- 
angular loop represents a loss of energy and the ring pile may thus be 
used as a damped spring. Kochanowsky's paper considers a shock-strut 
and tire combination in which the strut has no other elastic or damping 
element except such a ring-pile spring. During the first upstroke the 
analysis is extremely simple, since not even damping appears explicitly 
in the equations; but when the motion is followed beyond the force 
maximum, it is linear only in sections but nonlinear on the whole. The 
paper is an interesting study, but the ring-pile shock strut is not 
versatile enough to stand the competition with the modern oleo strut, 
and the problem is now obsolete. 
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The other paper which considers a nonlinear shock strut is a very 
serious and very detailed study by Marquard and Meyer zur Capellen 
(reference 7).  The authors consider velocity-square damping and 
polytropic compression of the air, formulate differential equations, 
and integrate them numerically. Unfortunately, the authors overestimate 
the accuracy requirements of the analysis.  In their tables values are 
given to six and even seven significant digits, and consequently they 
employ an exact but very tedious method of step-by-step integration. 

In addition to the detailed treatment of the nonlinear shock strut, 
the paper is remarkable for another reason. It not only considers an 
oleo-tire system with a very realistic shock strut, but it also considers 
the motion of the whole airplane in its plane of symmetry.  In a second 
paper (reference 8) the same authors extend their investigation to cases 
of unsymmetric landing.' But here also the attempt at exactness goes too 
far when the decrease of horizontal speed during the short impact time 
is taken into consideration.  This is pointed out in a paper by Schmitz 
(reference 9).  This author also considers the pitching motion of the 
airplane and includes the ensuing change of the lift, but he falls back 
to the old idea of "the" load-stroke curve and fails to realize that 
the cooperation between the elastic reaction of the air and the damping 
force caused by the orifice depends largely on the conditions of the 
impact. 

Besides the landing impact, the taxying of the airplane has always 
met with interest. Michael's paper (reference 1) pays attention to it, 
and Kochanowsky's papers (references h and 6) both consider the taxying 
impact in full detail. In these papers the statement is made and proved 
that when the airplane rolls over a sinusoidal ground swell, the mass m-L 
travels practically on a level path and that therefore the analysis may 
be made on the assumption that m^ = <». 

Besides these papers there are two by Schlaefke in which taxying 
is considered. One of them (reference 10) covers the same ground as 
the corresponding part of Kochanowsky's paper (reference k).  The second 
(reference ll) is a short note concerning the impact during the take-off 
run.  It seems to be the only paper devoted to this subject, and not 
much information is found in it. 

Additionally, there are a number of reports on experiments.  Most 
of them were tests made by the airplane manufacturers and served 
essentially the purpose of improving a new airplane model to the point 
where it was ready for production.  Today, it is difficult, if not 
impossible, to draw other than qualitative information from these reports 
since the airplanes, shock struts, and tires used in these tests no 
longer exist and details needed for an analysis may no longer be obtained 
readily. 
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■■ However, one of the experimental papers must be mentioned in this 
review, a short report of Hoke (reference 12) on the experiments he 
made in the Deutsche Versuchsanstalt für Luftfahrt. He measured, as 
functions of time, the vertical velocity of the airplane immediately 
before and during the landing impact and the vertical and lateral forces 
on the wheel. The fine experimental technique of the velocity measure- 
ment is described in the paper. 

Stanford University 
Stanford, Calif., November 15, 1951 
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777777777?. 
Figure 1.- Eepresentation of shock strut by spring and damper arranged 

in parallel. 
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(a) At t = 0. (b) At some later time. 

Figure 2.- Mechanical system in two positions. 
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(a) On shock-strut force. 
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(b) On impact force. 
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Figure 3-- Influence of unsprung mass. 
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fc/m^g 

t/T 
(a) Force on wheel. 

5 1.0 t/y     1.5 
(b) Development of stroke. 

Figure h.-  Influence of damping on landing impact. 
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(a) Force on shock strut. 
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Figure 5.. 
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(b) Force on wheel. 

Influence of spring constants on landing impact. 
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'•o      t/T 1.5 

(c) Displacement of airplane and deformation of tire. 

Figure 5«- Concluded. 
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Figure 6.- Influence of weight and lift on landing impact. 
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Figure 7-- Landing gear encountering obstacle during taxying. 
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Figure 8.- Displacement of wheel when obstacle is encountered during taxying. 

.3 .4 



82 NACA TN 27^3 
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Figure 9.- Effect of encountering obstacle during taxying on forces in 

shock strut and in tire. 
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Figure 10.- Different forms of oleo struts. 



NACA TN 27^3 83 

Figure 11.- Illustration of trapezoid method of integration. 
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Figure 12.- Illustration of polynomial method of integration. 
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Figure 13>- Cross section of metering pin. 
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Figure 11*.- Displacement Xj and stroke x against time. 
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Figure 15.- Force-time history of shock strut. 
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Figure l6.- Displacement x^ and stroke x for different metering pins. 
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Figure 17.- Force-time history for different metering pins. 
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Figure 18.- Vertical velocity i^ and rate of stroke x for different 

metering pins. 
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Figure 19-- Load-deflection curve of a tire. 
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'_jx! x2 

Figure 20.- Example of landing gear with shock strut inclined from vertical. 
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Figure 21.- Cases for which relation "between stroke and displacements 
is nonlinear. 
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///////////////}///////?&/&// 

Figure 22.- Schematic side view of airplane at time of first contact. 
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Figure 23-- Schematic side view of airplane at time 
of three-wheel contact. 
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Figure 24.- Schematic views of airplane during one-wheel landing. 

Situation at first contact. 
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Figure 25.- Schematic views of airplane during one-wheel landing. 
Situation when second wheel hits runway. 
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Figure 26.- Ring-pile spring. 

Figure 27.- Force-stroke diagram of a ring-pile spring. 
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